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How do rich biological behaviors arise from bi-molecular collisions?
Living cells are capable of a remarkably

diverse spectrum of behaviors in

response to cues from their environment.

These behaviors range from switch-like

responses, to the ability to detect minute

variations in stimulus against a uniform

background, to the generation of self-sus-

taining oscillations. The quantitative prop-

erties of cellular behavior can often be

usefully summarized by an input-output

relationship (similar to a dose-response

curve), allowing us to visualize the

response of a system as a function of an

applied stimulus.

If we zoom into the molecular level, all

of these behaviors arise from the seem-

ingly simple rules of biochemistry: mole-

cules colliding with each other, sticking
Figure 1. Biochemical Systems Viewed as Black Boxes Generating
Input-Output Relationships
(A) A simple Michaelis-Menten enzyme produces an input-output relationship
that is linear at low substrate concentrations but saturates when the enzyme
binding site is almost always occupied at high concentration.
(B) Goldbeter-Koshland zero-order ultrasensitivity. Two Michaelis-Menten
enzymes opposing each other can produce a sharp switch in the concentra-
tion of the reaction product as the velocity of one of the enzymes is increased.
(C) Linearizer scheme described by Savir et al. A Michaelis-Menten enzyme
uses a charged cofactor to catalyze a reaction but is inhibited by the un-
charged form of the cofactor. The total concentration of cofactor is held
constant in the cell. The result is a linear dependence of reaction rate on the
concentration of charged cofactor.
together, falling apart, and

catalyzing chemical trans-

formations. A major goal of

systems biology is to explain

how a rich palette of biolog-

ically useful input-output

relationships can be built

out of a chaotic swarm of

colliding molecules. Perhaps

the simplest building block

of a biochemical network is

the binding equilibrium be-

tween a site on a macromol-

ecule and a binding partner

that can stick to that site,

typically present at much

higher concentration (e.g., a

transcription factor binding

to a specific site on DNA or

substrate binding to the

active site of an enzyme).

When no other interactions

are present, the resulting

input-output function, re-

flecting the fraction of com-

plexes formed at steady

state, is a rectangular hyper-

bola: a curve that starts off

with a linear response when
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the concentration of the binding partner

is low and then saturates at high con-

centration, a situation in which the

binding sites are occupied with high

probability (Figure 1A). The logic of the

rectangular hyperbola underlies the

familiar Michaelis-Menten scheme in

enzymology. However, as Savir et al.

point out in this issue, this scheme con-

tains a fundamental trade-off: when an

enzyme is operating near capacity, it be-

comes quite insensitive to changes in

substrate concentration (Savir et al.,

2015).

Much work in biochemistry has gone

into asking how the rules of the simple

Michaelis-Menten binding scheme can

be altered to create biochemical systems
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with different input-output properties.

Early observations indicated that, in

some systems with multiple binding

sites, most famously hemoglobin, the

fraction of bound molecules has a

sigmoidal, ultrasensitive dependence on

substrate concentration. This behavior

can be explained by modifying the

simple binding scheme described above

to incorporate the powerful idea that

different sites in a molecule are allosteri-

cally coupled so that binding a ligand

in one site exerts an influence on the

other sites (Monod et al., 1965). In the

case of hemoglobin, binding of the first

O2 molecule to the tetramer induces

a conformational change that makes

binding the next O2 more likely.
A conceptually distinct

class of mechanisms for

producing switch-like, ultra-

sensitive responses does so

by building up biochemical

circuitry in such a way that,

while the input-output rela-

tionship of each underlying

element might follow the sim-

ple binding curve, the input-

output relationship of the

whole system is very different.

A classic example is the zero-

order ultrasensitivity scheme

due to Goldbeter and Kosh-

land (1981). Here, two en-

zymes catalyzing opposing

reactions—a kinase and a

phosphatase, for example—

each act with Michaelis-

Menten kinetics. When both

enzymes are close to satura-

tion and their binding sites

are occupied most of the

time, the steady-state con-

centration of modified sub-

strate becomes a very switch-

like function of the relative

enzyme activities (Figure 1B).
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More recently, systems biologists have

become interested in simple biochemical

schemes that can produce the opposite

effect: outputs that are proportional to

inputs over a wide range. For example,

an incoherent feedforward loop of

transcriptional elements, each obeying

simple binding rules, can respond pro-

portionally to fold changes in the input

to the circuit rather than its absolute

concentration (Goentoro et al., 2009). In

this issue, Savir et al. propose an elegant

class of mechanisms that allow the input-

output relationship for an enzyme to vary

linearly over the full range of substrate

concentrations in the cell. This insight

is based on the idea that many key

molecules—for example, ATP, ADP, and

AMP—are interconverted in the cell so

that their total concentration stays

approximately constant. Enzymes that

consume these molecules are often

competitively inhibited by their products:

an ATPase inhibited by ADP (Drobinskaya

et al., 1985). Under these conditions,

when substrate concentration increases,

inhibitor concentration necessarily de-

creases. When the enzyme binds both

substrate and product with similar

affinity, the result is that the input-output

relationship for the enzyme is linearized

(Figure 1C).
Savir et al. point out that this scenario

may very well apply to the SAGA histone

acetyltransferase complex, which con-

sumes acetyl-CoA and may be com-

petitively inhibited by CoA. Interestingly,

assembly of the SAGA complex is itself

promoted by acetylation. Positive feed-

back, in this case mediated by self-acety-

lation, can impose a threshold so that the

input-output relation is not responsive

below a critical level of input (Gunawar-

dena, 2005). The combination of both

effects produces a ‘‘linear rectifier,’’ an

element that requires a critical level of

input to respond and then produces

output that grows linearly with input.

In addition to demonstrating that a

simple set of biologically reasonable con-

ditions can extend a response’s linear

range, the analysis of Savir et al. gener-

ates concrete hypotheses that can help

to explain features of biological systems

that might otherwise seem like extra-

neous details. Faced with the challenge

of trying to understand the complexity of

the dense network of signaling interac-

tions in a cell, it is tempting to draw paral-

lels to the architecture of human-created

electronic circuits (Lazebnik, 2002; Milo

et al., 2002; Sorger, 2005). Our engi-

neered systems rely on carefully designed

modularity, where small groups of com-
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ponents perform well-defined functions,

such as filtering or amplifying an upstream

signal and then passing it on to the next

module in the circuit. How far this analogy

can take us in cell biology remains

unclear, but it has been remarkably fruitful

as a guiding principle for research, as

Savir et al. demonstrate.
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