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How do rich biological behaviors arise from bi-molecular collisions?

Living cells are capable of a remarkably
diverse spectrum of behaviors in
response to cues from their environment.
These behaviors range from switch-like
responses, to the ability to detect minute
variations in stimulus against a uniform
background, to the generation of self-sus-
taining oscillations. The quantitative prop-
erties of cellular behavior can often be
usefully summarized by an input-output
relationship (similar to a dose-response
curve), allowing us to visualize the
response of a system as a function of an
applied stimulus.

If we zoom into the molecular level, all
of these behaviors arise from the seem-
ingly simple rules of biochemistry: mole-
cules colliding with each other, sticking
together, falling apart, and
catalyzing chemical trans-
formations. A major goal of
systems biology is to explain
how a rich palette of biolog-
ically useful input-output
relationships can be built
out of a chaotic swarm of
colliding molecules. Perhaps
the simplest building block
of a biochemical network is
the binding equilibrium be-
tween a site on a macromol-
ecule and a binding partner
that can stick to that site,
typically present at much
higher concentration (e.g., a
transcription factor binding
to a specific site on DNA or
substrate binding to the
active site of an enzyme).
When no other interactions
are present, the resulting
input-output  function, re-
flecting the fraction of com-
plexes formed at steady
state, is a rectangular hyper-
bola: a curve that starts off
with a linear response when
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the concentration of the binding partner
is low and then saturates at high con-
centration, a situation in which the
binding sites are occupied with high
probability (Figure 1A). The logic of the
rectangular hyperbola underlies the
familiar Michaelis-Menten scheme in
enzymology. However, as Savir et al.
point out in this issue, this scheme con-
tains a fundamental trade-off: when an
enzyme is operating near capacity, it be-
comes quite insensitive to changes in
substrate concentration (Savir et al.,
2015).

Much work in biochemistry has gone
into asking how the rules of the simple
Michaelis-Menten binding scheme can
be altered to create biochemical systems
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Figure 1. Biochemical Systems Viewed as Black Boxes Generating
Input-Output Relationships
(A) A simple Michaelis-Menten enzyme produces an input-output relationship
that is linear at low substrate concentrations but saturates when the enzyme
binding site is almost always occupied at high concentration.
(B) Goldbeter-Koshland zero-order ultrasensitivity. Two Michaelis-Menten
enzymes opposing each other can produce a sharp switch in the concentra-
tion of the reaction product as the velocity of one of the enzymes is increased.
(C) Linearizer scheme described by Savir et al. A Michaelis-Menten enzyme
uses a charged cofactor to catalyze a reaction but is inhibited by the un-
charged form of the cofactor. The total concentration of cofactor is held
constant in the cell. The result is a linear dependence of reaction rate on the
concentration of charged cofactor.
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with different input-output properties.
Early observations indicated that, in
some systems with multiple binding
sites, most famously hemoglobin, the
fraction of bound molecules has a
sigmoidal, ultrasensitive dependence on
substrate concentration. This behavior
can be explained by modifying the
simple binding scheme described above
to incorporate the powerful idea that
different sites in a molecule are allosteri-
cally coupled so that binding a ligand
in one site exerts an influence on the
other sites (Monod et al., 1965). In the
case of hemoglobin, binding of the first
O, molecule to the tetramer induces
a conformational change that makes
binding the next O, more likely.

A conceptually distinct
class of mechanisms for
producing switch-like, ultra-
sensitive responses does so
by building up biochemical
circuitry in such a way that,
while the input-output rela-
tionship of each underlying
element might follow the sim-
ple binding curve, the input-
output relationship of the
whole system is very different.
A classic example is the zero-
order ultrasensitivity scheme
due to Goldbeter and Kosh-
land (1981). Here, two en-
zymes catalyzing opposing
reactions—a kinase and a
phosphatase, for example—
each act with Michaelis-
Menten kinetics. When both
enzymes are close to satura-
tion and their binding sites
are occupied most of the
time, the steady-state con-
centration of modified sub-
strate becomes a very switch-
like function of the relative
enzyme activities (Figure 1B).
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More recently, systems biologists have
become interested in simple biochemical
schemes that can produce the opposite
effect: outputs that are proportional to
inputs over a wide range. For example,
an incoherent feedforward loop of
transcriptional elements, each obeying
simple binding rules, can respond pro-
portionally to fold changes in the input
to the circuit rather than its absolute
concentration (Goentoro et al., 2009). In
this issue, Savir et al. propose an elegant
class of mechanisms that allow the input-
output relationship for an enzyme to vary
linearly over the full range of substrate
concentrations in the cell. This insight
is based on the idea that many key
molecules—for example, ATP, ADP, and
AMP —are interconverted in the cell so
that their total concentration stays
approximately constant. Enzymes that
consume these molecules are often
competitively inhibited by their products:
an ATPase inhibited by ADP (Drobinskaya
et al.,, 1985). Under these conditions,
when substrate concentration increases,
inhibitor concentration necessarily de-
creases. When the enzyme binds both
substrate and product with similar
affinity, the result is that the input-output
relationship for the enzyme is linearized
(Figure 1C).

Savir et al. point out that this scenario
may very well apply to the SAGA histone
acetyltransferase complex, which con-
sumes acetyl-CoA and may be com-
petitively inhibited by CoA. Interestingly,
assembly of the SAGA complex is itself
promoted by acetylation. Positive feed-
back, in this case mediated by self-acety-
lation, can impose a threshold so that the
input-output relation is not responsive
below a critical level of input (Gunawar-
dena, 2005). The combination of both
effects produces a “linear rectifier,” an
element that requires a critical level of
input to respond and then produces
output that grows linearly with input.

In addition to demonstrating that a
simple set of biologically reasonable con-
ditions can extend a response’s linear
range, the analysis of Savir et al. gener-
ates concrete hypotheses that can help
to explain features of biological systems
that might otherwise seem like extra-
neous details. Faced with the challenge
of trying to understand the complexity of
the dense network of signaling interac-
tions in a cell, it is tempting to draw paral-
lels to the architecture of human-created
electronic circuits (Lazebnik, 2002; Milo
et al., 2002; Sorger, 2005). Our engi-
neered systems rely on carefully designed
modularity, where small groups of com-
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ponents perform well-defined functions,
such as filtering or amplifying an upstream
signal and then passing it on to the next
module in the circuit. How far this analogy
can take us in cell biology remains
unclear, but it has been remarkably fruitful
as a guiding principle for research, as
Savir et al. demonstrate.
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